组内通告
研究动态
 
  研究动态
当前位置: 首页>>组内通告>>最新成果>>正文
 
The Self-Organized Critical Behavior in Pd-based Bulk Metallic Glass
2015-09-02 22:22  

Wang, Z., Li, J., Zhang, W., Qiao, J., & Wang, B. (2015).  Metals, 5(3), 1188-1196.

Abstract 

Bulk metallic glasses (BMGs) deform irreversibly through shear banding manifested as serrated-flow behavior during compressive tests. The strain-rate-dependent plasticity under uniaxial compression at the strain rates of 2 × 10−2, 2 × 10−3, and 2 × 10−4·s−1 in a Pd-based BMG is investigated. The serrated flow behavior is not observed in the stress-strain curve at the strain rate of 2 × 10−2·s−1. However, the medial state occurs at the strain rates of 2 × 10−3·s−1, and eventually the self-organized critical (SOC) behavior appears at the strain rate of 2 × 10−4·s−1. The distribution of the elastic energy density shows a power-law distribution with the power-law exponent of −2.76, suggesting that the SOC behavior appears. In addition, the cumulative probability is well approximated by a power-law distribution function with the power-law exponent of 0.22 at the strain rate of 2 × 10−4·s−1. The values of the goodness of fit are 0.95 and 0.99 at the strain rates of 2 × 10−3 and 2 × 10−4·s−1, respectively. The transition of the dynamic serrated flows of BMGs is from non-serrated flow to an intermediate state and finally to the SOC state with decreasing the strain rates.

详细

关闭窗口
 
 
 
 返回首页 | 网站地图 | 联系我们 | 管理登录 

大连理工大学非晶及纳米晶功能材料研究室  地址:辽宁省大连市大连理工大学材料科学与工程学院
电话:0411-84706400  邮编:116024