研究成果
发表论文
 
  发表论文
当前位置: 首页>>研究成果>>发表论文>>正文
 
Formation and crystallization behavior of Fe-based amorphous precursors with pre-existing α-Fe nanoparticles—Structure and magnetic properties of high-Cu-content Fe-Si-B-Cu-Nb nanocrystalline alloys
2021-09-02 14:47  

Y.H. Li, X.J. Jia, W. Zhang, Y. Zhang, G.Q. Xie, Z.Y. Qiu, J.H. Luan, Z.B. Jiao. Journal of Materials Science & Technology, 2021, 65:171-181.

Abstract:

Structure, crystallization behavior, and magnetic properties of as-quenched and annealed Fe81.3Si4B13Cu1.7 (Cu1.7) alloy ribbons and effects of Nb alloying have been studied. Three-dimensional atom probe and transmission electron microscopy analyses reveal that high-number-density Cu-clusters and Pre-existing Nano-sized α-Fe Particles (PN-α-Fe) are coexistence in the melt-spun Cu1.7 amorphous matrix, and the PN-α-Fe form by manners of one-direction adjoining and enveloping the Cu-clusters. Two-step crystallization behavior associated with growth of the PN-α-Fe and subsequent nucleation and growth of newly-formed α-Fe is found in the primary crystallization stage of the Cu1.7 alloy. The number densities of the Cu-clusters and PN-α-Fe in melt-spun Fe81.3−xSi4B13Cu1.7Nbx alloys are gradually reduced with enriching of Nb, and a fully amorphous structure forms at 4 at.% Nb, although smaller Cu-clusters still exist. After annealing, 2 at.% Nb coarsens the average size (Dα-Fe) of the α-Fe grains from 14.0 nm of the Nb-free alloy to 21.6 nm, and 4 at.% Nb refines the Dα-Fe to 8.9 nm. The mechanisms of the α-Fe nucleation and growth during quenching and annealing for the alloys with large quantities of PN-α-Fe as well as after Nb alloying have been discussed, and an annealing-induced α-Fe growth mechanism in term of the barrier co-contributed by competitive growth among the PN-α-Fe and diffusion-suppression effect of Nb atoms has been proposed. A coercivity (Hc) ∝ Dα-Fe3 correlation has been found for the nanocrystalline alloys, and the permeability is inverse with the Hc.

详细


关闭窗口
 
 
 
 返回首页 | 网站地图 | 联系我们 | 管理登录 

大连理工大学非晶及纳米晶功能材料研究室  地址:辽宁省大连市大连理工大学材料科学与工程学院
电话:0411-84706400  邮编:116024